Product cleanliness (VCCN Guideline 12)

Msc. Olof Teulings

Contents

After this presentation, you will know

- Who I am and where I work
- What the VCCN is

- Contents of the guideline 12
- Practical interpretation by NTS
- Impact on design of the cleanroom

MSc. Olof Teulings

Process & Cleanroom engineer @ NTS

Over 10 years of experience in:

- Continuous improvement of
 - clean assembly
 - · clean room
- Layout and expansion of the cleanroom

Co-author of the VCCN guideline 12.

NTS

First-Tier Contract Manufacturer of (opto-) mechatronic systems and mechanical modules

- Semicon & Analytical markets
- High complexity products, Low Volume
- Complete chain
 - Development,
 - Precision components and frames
 - System integration
- Global presence (Europe, Asia, USA)
- Over 1700 employees
- Turnover of €350+ million

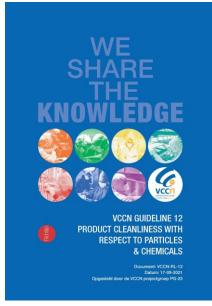
NTS

Facilities

- Cleanroom
 - over 5500 m² (ISO 5-8, AMC)
- Cleaning processes, a.o.
 - Alkaline cleaning
 - Vapour degreasing (in 2023)
 - Bake-out
 - Sensitive snowcleaning
- Laboratory, a.o.
 - Fast Micro + PMC
 - Sem-EDX
 - Sensitive RGA

VCCN – What is the VCCN?

- Dutch society for Contamination Control
- Founded in 1988
- Over 500 members
- Active in different markets:
 - Micro-Nano
 - Health care
 - Pharma
 - Food
 - Space



Developing knowledge

ISO classification number (N)	Maximum concentration limits (particles/m³ of air) for particles equal to and larger than the considered sizes shown below										
	0.1 µm	0,2 μm	0,3 μm	0,5 μm	1 µm	5 μm					
ISO Class 1	10	2									
ISO Class 2	100	24	10	4							
ISO Class 3	1 000	237	102	35	8						
ISO Class 4	10 000	2 370	1 020	352	83						
ISO Class 5	100 000	23 700	10 200	3 520	832	29					
ISO Class 6	1 000 000	237 000	102 000	35 200	8 320	293					
ISO Class 7				352 000	83 200	2 930					
ISO Class 8				3 520 000	832 000	29 300					
ISO Class 9				35 200 000	8 320 000	293 000					

NOTE. Uncertainties related to the measurement process require that concentration data with no more than three significant figures be used in determining the classification level.

Projects

Transfering knowledge

Courses, Trainings and Workshops

Technical

Behaviour

Cleaning



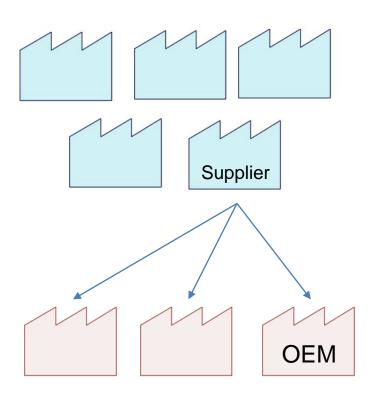
Product cleanliness

Sharing knowledge

Excursions & Business fairs

Conferences & Symposia

C² MGZN - Magazine


Guideline 12

Product cleanliness

with respect to Particles & Chemicals

Guideline 12 – Why?

Surface cleanliness for particles and chemicals

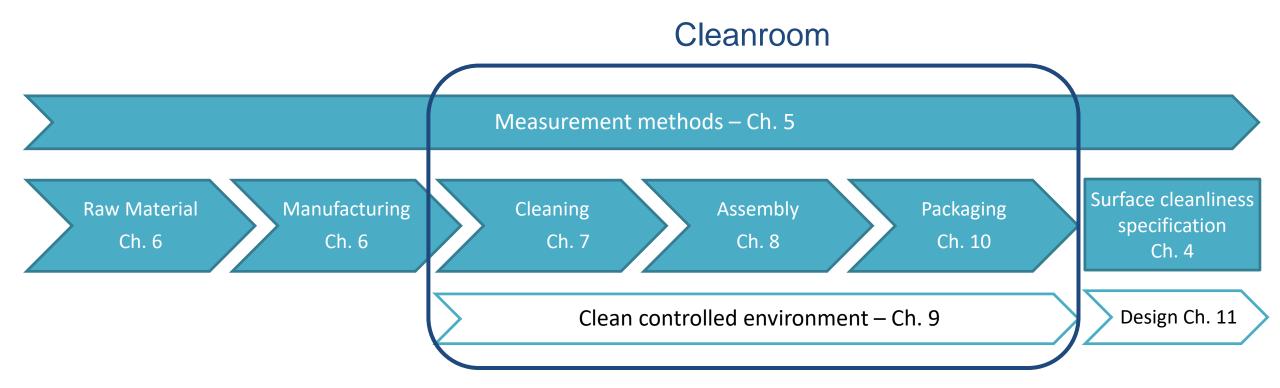
A lot of different suppliers deliver parts/modules to the same set of OEM's:

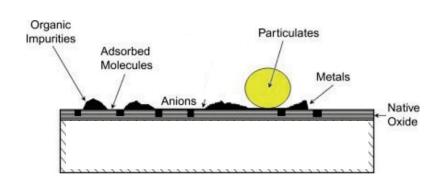
- Every OEM specifies cleanliness in its own way
- Every supplier produces and cleans in its own way

Is there not a common ground?

Guideline 12: Product cleanliness

Group organised by VCCN with OEM, Suppliers & Consultants





Complete supply chain (Contents)

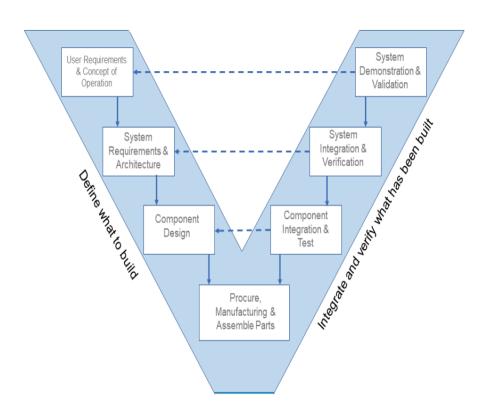
Surface cleanliness specification (Chapter 4)

ISO SCC	Extre cle			ery ean	Cle	ean	Di	rty	
-1]
-2									Dirty
-3									
-4									
-5									Clean
-6									
-7									
-8									Very clean
-9									
-10									Extremely
-11									clean
-12									orodin
	1	2	3	4	5	6	7	8	ISO SCP

• Use ISO14644 standards

other standards in Annex

Specification for:


− Particles → SCP

- Chemicals \rightarrow SCC

Trace elements

Relation between Particles and Chemicals

Surface cleanliness specification (Chapter 4)

- Design using the 'V-model'
 - Define and validate each phase
- Make cleanliness budgets
- Don't over or under specify
 - Use a risk assessment
- Specify with measurement method!

Measurement methods (Chapter 5)

Particle measurement techniques

Size ra	Size range of particles on surfaces (µm)										
0.005	0.01	0.05	0.1	0.5	1	5	10	50	100	500	1000
								Visual c	ounting	•	•
							Stereo r	nicrosco	ру		
						Surface monitor					
					Microsco	cope (dark field)					
				Laser dif	fraction	particle a	analyser				
			Near fie	ear field microscopy							
			Light sca	Light scattering							
			Scannin	Scanning Electron Microscopy							
Transmission Electron Microscop											
Atomic	Atomic Force Microscopy										

Chemical sampling techniques

Sampling procedure	Measured contaminant	Measurement technique	Industry/Laboratory
Gas purge	Organics,	Tenax-TD-GC, RGA	Industry
Gas Purge	Acids, bases	Ion chromatography, Ion Mobility	Laboratory
		Spectrometry, specific monitoring	
Leaching	Inorganics,	Ion chromatography, ICP-MS, Gas	Laboratory
	organics	Chromatography	
Leaching	Inorganics,	Weighing	Industry
	organics		
Witness plate	Inorganics,	ICP-MS, FTIR, XPS, AAS	Laboratory
	Organics		
C-tabs	Inorganics,	SEM-EDX,	Industry/Laboratory
	organics		
Moisture	Water	CRDS	Laboratory
Vacuum	Organics	RGA	Industry/Laboratory
extraction			

- Direct or indirect measurements
 - Indirect is removing with air, liquid or solid
- Industrial or laboratory methods
- Total overview in:
 - ISO 14644-9 (particles)
 - ISO 14644-10 (chemical)

Routine measurement

MEASUREMENT METHODS

- Have a laboratory!
 - Be able to measure (more than)
 the OEM's demand

 Laboratory techniques are transferring (temporary) to Routine measurements

Raw material & Manufacturing (Chapter 6)

Raw material

- Uniform
- Properties change for larger blocks...

Environment of manufacturing

- Separate materials for cross-contamination
- Air

Handling, packaging & transport

- Gloves,
- Covered,
- markings

Raw material & Manufacturing (Chapter 6)

Machining

- Fluids quality
- Cross contamination previous products
- Fluids must be matched to cleaning process

Intermediate cleaning

Prevents drying in of fluids

Surface treatment

- Contamination can diffuse through the surface
- Cleanliness of treatment fluids

MACHINING

Fluid control

- Environmental control
- Intermediate cleaning
- Everything with gloves, no exception

→ 1 FTE

Cleaning (Chapter 7)

Guide to choosing cleaning method:

- 1. Object description
- 2. Cleanliness specification
- 3. Initial contamination level
- 4. other requirements
 - a.o. capacity, environment
- 5. Select cleaning methodology
- 6. Check material compatibility
- 7. Cleanliness validation
- 8. Validate cleaning methodology

Cleaning (Chapter 7)

Particle removal	dirty		very clean		е	xtremel	y clean	
Technique	SCP 8	SCP 7	SCP 6	SCP 5	SCP 4	SCP 3	SCP 2	SCP 1
Mechanical cleaning								
Wiping	х	х	х	х				
Brushing/Sweeping	x	×	×					
Scraping/Abrading		×	×					
Grinding		×	×					
Fluidic cleaning								
Washing/Rinsing		х	х					
Compressed gas cleaning/rinsing		×	×					
Vacuum cleaning		×	×					
Acoustic cleaning			×	х				
1 Ultrasonic cleaning			×	x				
2 Megasonic cleaning			×	x				
Spray cleaning		х	x	x				
Vacuum cyclic nucleation				х	х			

Chemical removal	dirty		very clean			extremely clean		
Technique	SCC -1	SCC -2	SCC -3	SCC -4	SCC -5	SCC -6	SCC -7	SCC -8
Fluidic cleaning								
Washing/Rinsing	Х	х	х	х				
Compressed gas cleaning/rinsing	X	х	x	x				
Acoustic cleaning	x	х	х	x	х			
1 Ultrasonic cleaning	х	х	х	х	х			
2 Megasonic cleaning	×	х	x	x	х			
Spray cleaning	X	х	x	x	x			
Vacuum cyclic nucleation		х	х	х	x			

- Overview of cleaning methods and their achievable cleanliness level
 - Particles (SCP)
 - Chemicals (SCC)

CLEANING

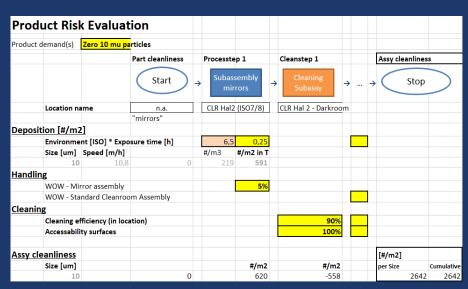
- Keep improving cleaning Process
- Introduction of Sensitive snow cleaning (SCP 4, SCC -6)
- Validation of cleaning
- More processes

→ 1 FTE!

Assembly (Chapter 8)

Deposition contamination

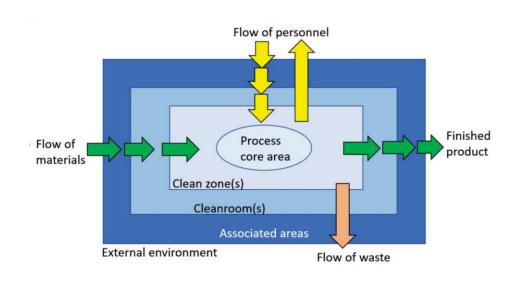
Particle Deposition Rate (ISO 14644-17)


Assembly contamination

- Handling
- Assembly action (screw, glue, etc.)

Assy cleaning

- Less cleaning methods available
- Product risk assessment



ASSEMBLY

- Measure deposition (ACP, PDR)
- Train & audit for Assembly
- Dark rooms for assy cleaning
- Do the product risk assessment!

Contamination control (Chapter 9)

Air cleanliness

Particle/Chemical Deposition Rate calculations

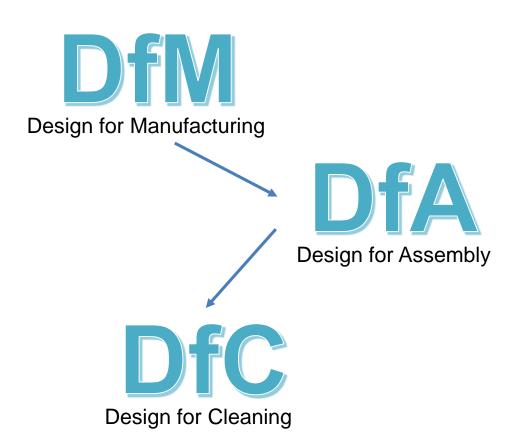
$$PDRL = \frac{PDR(D) \cdot D}{10}$$

$$Cs(D) = PDR(D) \cdot T$$

$$N(D) = PDR(D) \cdot A \cdot T$$

Particle control solutions

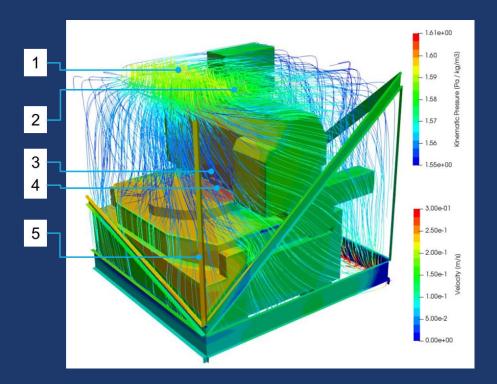
- Installation
- Layout personnel & goods Locks
- Equipment
- Cleaning
- Way-of-Working



CONTAMINATION CONTROL

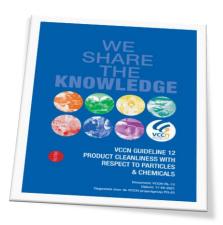
- Keep measuring
- Organise responsibility
- Layout challenge:
 - Flexible (m²) vs Separation
- Continuous improvement
 - → 1 FTE!

Design for Cleanliness (Chapter 10)


Design considerations for Particles

- Low particle generation material
- Small surfaces
- Short exposure

Design considerations for Chemicals


- Rules for UHV design
- Low outgassing materials
- Surface roughness
- Design for cleaning

DESIGN FOR CLEANLINESS

- DfC training
- Outgassing calculations
- CFD simulations for particles

vccn | WE SHARE THE KNOWLEDGE

Closure

Process is the most important!

Guideline 12 describes the process for the complete supply chain!

Cleanroom

- Cleaning processes will grow
- Labo is Needed
- Flexibility

Product cleanliness

- Is a lot of work!
- Work together
 - Cleanliness Competence Team!

Thank you for your attention,

Any questions?

